Papers
Topics
Authors
Recent
2000 character limit reached

Ensemble of Deep Learned Features for Melanoma Classification

Published 20 Jul 2018 in cs.CV | (1807.08008v1)

Abstract: The aim of this work is to propose an ensemble of descriptors for Melanoma Classification, whose performance has been evaluated on validation and test datasets of the melanoma challenge 2018. The system proposed here achieves a strong discriminative power thanks to the combination of multiple descriptors. The proposed system represents a very simple yet effective way of boosting the performance of trained CNNs by composing multiple CNNs into an ensemble and combining scores by sum rule. Several types of ensembles are considered, with different CNN architectures along with different learning parameter sets. Moreover CNN are used as feature extractors: an input image is processed by a trained CNN and the response of a particular layer (usually the classification layer, but also internal layers can be employed) is treated as a descriptor for the image and used for training a set of Support Vector Machines (SVM).

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.