Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Lie-Trotter product formula for locally equicontinuous and tight Markov semigroup (1807.07728v1)

Published 20 Jul 2018 in math.FA

Abstract: In this paper we prove a Lie-Trotter product formula for Markov semigroups in spaces of measures. We relate our results to "classical" results for strongly continuous linear semigroups on Banach spaces or Lipschitz semigroups in metric spaces and show that our approach is an extension of existing results. As Markov semigroups on measures are usually neither strongly continuous nor bounded linear operators for the relevant norms, we prove the convergence of the Lie-Trotter product formula assuming that the semigroups are locally equicontinuous and tight. A crucial tool we use in the proof is a Schur-like property for spaces of measures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.