Papers
Topics
Authors
Recent
2000 character limit reached

PointSeg: Real-Time Semantic Segmentation Based on 3D LiDAR Point Cloud

Published 17 Jul 2018 in cs.CV | (1807.06288v8)

Abstract: In this paper, we propose PointSeg, a real-time end-to-end semantic segmentation method for road-objects based on spherical images. We take the spherical image, which is transformed from the 3D LiDAR point clouds, as input of the convolutional neural networks (CNNs) to predict the point-wise semantic map. To make PointSeg applicable on a mobile system, we build the model based on the light-weight network, SqueezeNet, with several improvements. It maintains a good balance between memory cost and prediction performance. Our model is trained on spherical images and label masks projected from the KITTI 3D object detection dataset. Experiments show that PointSeg can achieve competitive accuracy with 90fps on a single GPU 1080ti. which makes it quite compatible for autonomous driving applications.

Citations (113)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.