Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Mean square rate of convergence for random walk approximation of forward-backward SDEs (1807.05889v2)

Published 16 Jul 2018 in math.PR

Abstract: Let (Y, Z) denote the solution to a forward-backward SDE. If one constructs a random walk B n from the underlying Brownian motion B by Skorohod embedding, one can show L 2 convergence of the corresponding solutions (Y n , Z n) to (Y, Z). We estimate the rate of convergence in dependence of smoothness properties, especially for a terminal condition function in C 2,$\alpha$. The proof relies on an approximative representation of Z n and uses the concept of discretized Malliavin calculus. Moreover, we use growth and smoothness properties of the PDE associated to the FBSDE as well as of the finite difference equations associated to the approximating stochastic equations. We derive these properties by stochastic methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.