Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The method of codifferential descent for convex and global piecewise affine optimization (1807.05538v5)

Published 15 Jul 2018 in math.OC

Abstract: The class of nonsmooth codifferentiable functions was introduced by professor V.F.~Demyanov in the late 1980s. He also proposed a method for minimizing these functions called the method of codifferential descent (MCD). However, until now almost no theoretical results on the performance of this method on particular classes of nonsmooth optimization problems were known. In the first part of the paper, we study the performance of the method of codifferential descent on a class of nonsmooth convex functions satisfying some regularity assumptions, which in the smooth case are reduced to the Lipschitz continuity of the gradient. We prove that in this case the MCD has the iteration complexity bound $\mathcal{O}(1 / \varepsilon)$. In the second part of the paper we obtain new global optimality conditions for piecewise affine functions in terms of codifferentials. With the use of these conditions we propose a modification of the MCD for minimizing piecewise affine functions (called the method of global codifferential descent) that does not use line search, and discards those "pieces" of the objective functions that are no longer useful for the optimization process. Then we prove that the MCD as well as its modification proposed in the article find a point of global minimum of a nonconvex piecewise affine function in a finite number of steps.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube