Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 66 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Cutoff for Random Walk on Dynamical Erdős--Rényi Graph (1807.04719v3)

Published 12 Jul 2018 in math.PR

Abstract: We consider dynamical percolation on the complete graph $K_n$, where each edge refreshes its state at rate $\mu \ll 1/n$, and is then declared open with probability $p = \lambda/n$ where $\lambda > 1$. We study a random walk on this dynamical environment which jumps at rate $1/n$ along every open edge. We show that the mixing time of the full system exhibits cutoff at $\log n/\mu$. We do this by showing that the random walk component mixes faster than the environment process; along the way, we control the time it takes for the walk to become isolated.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.