Papers
Topics
Authors
Recent
Search
2000 character limit reached

Variational Capsules for Image Analysis and Synthesis

Published 11 Jul 2018 in cs.CV | (1807.04099v1)

Abstract: A capsule is a group of neurons whose activity vector models different properties of the same entity. This paper extends the capsule to a generative version, named variational capsules (VCs). Each VC produces a latent variable for a specific entity, making it possible to integrate image analysis and image synthesis into a unified framework. Variational capsules model an image as a composition of entities in a probabilistic model. Different capsules' divergence with a specific prior distribution represents the presence of different entities, which can be applied in image analysis tasks such as classification. In addition, variational capsules encode multiple entities in a semantically-disentangling way. Diverse instantiations of capsules are related to various properties of the same entity, making it easy to generate diverse samples with fine-grained semantic attributes. Extensive experiments demonstrate that deep networks designed with variational capsules can not only achieve promising performance on image analysis tasks (including image classification and attribute prediction) but can also improve the diversity and controllability of image synthesis.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.