Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-stage iterative Procrustes match algorithm and its application for VQ-based speaker verification (1807.03587v1)

Published 10 Jul 2018 in cs.CV

Abstract: In the past decades, Vector Quantization (VQ) model has been very popular across different pattern recognition areas, especially for feature-based tasks. However, the classification or regression performance of VQ-based systems always confronts the feature mismatch problem, which will heavily affect the performance of them. In this paper, we propose a two-stage iterative Procrustes algorithm (TIPM) to address the feature mismatch problem for VQ-based applications. At the first stage, the algorithm will remove mismatched feature vector pairs for a pair of input feature sets. Then, the second stage will collect those correct matched feature pairs that were discarded during the first stage. To evaluate the effectiveness of the proposed TIPM algorithm, speaker verification is used as the case study in this paper. The experiments were conducted on the TIMIT database and the results show that TIPM can improve VQ-based speaker verification performance clean condition and all noisy conditions.

Summary

We haven't generated a summary for this paper yet.