Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Patch Learning for Weakly Supervised Object Classification and Discovery (1705.02429v1)

Published 6 May 2017 in cs.CV

Abstract: Patch-level image representation is very important for object classification and detection, since it is robust to spatial transformation, scale variation, and cluttered background. Many existing methods usually require fine-grained supervisions (e.g., bounding-box annotations) to learn patch features, which requires a great effort to label images may limit their potential applications. In this paper, we propose to learn patch features via weak supervisions, i.e., only image-level supervisions. To achieve this goal, we treat images as bags and patches as instances to integrate the weakly supervised multiple instance learning constraints into deep neural networks. Also, our method integrates the traditional multiple stages of weakly supervised object classification and discovery into a unified deep convolutional neural network and optimizes the network in an end-to-end way. The network processes the two tasks object classification and discovery jointly, and shares hierarchical deep features. Through this jointly learning strategy, weakly supervised object classification and discovery are beneficial to each other. We test the proposed method on the challenging PASCAL VOC datasets. The results show that our method can obtain state-of-the-art performance on object classification, and very competitive results on object discovery, with faster testing speed than competitors.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Peng Tang (47 papers)
  2. Xinggang Wang (163 papers)
  3. Zilong Huang (42 papers)
  4. Xiang Bai (222 papers)
  5. Wenyu Liu (146 papers)
Citations (73)

Summary

We haven't generated a summary for this paper yet.