Papers
Topics
Authors
Recent
Search
2000 character limit reached

Financial Trading as a Game: A Deep Reinforcement Learning Approach

Published 8 Jul 2018 in q-fin.TR, cs.LG, and stat.ML | (1807.02787v1)

Abstract: An automatic program that generates constant profit from the financial market is lucrative for every market practitioner. Recent advance in deep reinforcement learning provides a framework toward end-to-end training of such trading agent. In this paper, we propose an Markov Decision Process (MDP) model suitable for the financial trading task and solve it with the state-of-the-art deep recurrent Q-network (DRQN) algorithm. We propose several modifications to the existing learning algorithm to make it more suitable under the financial trading setting, namely 1. We employ a substantially small replay memory (only a few hundreds in size) compared to ones used in modern deep reinforcement learning algorithms (often millions in size.) 2. We develop an action augmentation technique to mitigate the need for random exploration by providing extra feedback signals for all actions to the agent. This enables us to use greedy policy over the course of learning and shows strong empirical performance compared to more commonly used epsilon-greedy exploration. However, this technique is specific to financial trading under a few market assumptions. 3. We sample a longer sequence for recurrent neural network training. A side product of this mechanism is that we can now train the agent for every T steps. This greatly reduces training time since the overall computation is down by a factor of T. We combine all of the above into a complete online learning algorithm and validate our approach on the spot foreign exchange market.

Citations (68)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.