Papers
Topics
Authors
Recent
2000 character limit reached

Weak model categories in classical and constructive mathematics

Published 7 Jul 2018 in math.CT and math.AT | (1807.02650v3)

Abstract: We introduce a notion of "weak model category" which is a weakening of the notion of Quillen model category, still sufficient to define a homotopy category, Quillen adjunctions, Quillen equivalences and most of the usual construction of categorical homotopy theory. Both left and right semi-model categories are weak model categories, and the opposite of a weak model category is again a weak model category. The main advantages of weak model categories is that they are easier to construct than Quillen model categories. In particular we give some simple criteria on two weak factorization systems for them to form a weak model category. The theory is developed in a very weak constructive framework and we use it to produce, completely constructively (even predicatively), weak versions of various standard model categories, including the Kan-Quillen model structure, the variant of the Joyal model structure on marked simplicial sets, and the Verity model structure for weak complicial sets. We also construct semi-simplicial versions of all these.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.