Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Updating Probabilistic Knowledge on Condition/Event Nets using Bayesian Networks (1807.02566v1)

Published 29 Jun 2018 in cs.LO and cs.SI

Abstract: The paper extends Bayesian networks (BNs) by a mechanism for dynamic changes to the probability distributions represented by BNs. One application scenario is the process of knowledge acquisition of an observer interacting with a system. In particular, the paper considers condition/event nets where the observer's knowledge about the current marking is a probability distribution over markings. The observer can interact with the net to deduce information about the marking by requesting certain transitions to fire and observing their success or failure. Aiming for an efficient implementation of dynamic changes to probability distributions of BNs, we consider a modular form of networks that form the arrows of a free PROP with a commutative comonoid structure, also known as term graphs. The algebraic structure of such PROPs supplies us with a compositional semantics that functorially maps BNs to their underlying probability distribution and, in particular, it provides a convenient means to describe structural updates of networks.

Citations (4)

Summary

We haven't generated a summary for this paper yet.