Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Semi-Lagrangian Spectral Method for the Vlasov-Poisson System based on Fourier, Legendre and Hermite Polynomials

Published 5 Jul 2018 in math.NA | (1807.02418v1)

Abstract: In this work, we apply a semi-Lagrangian spectral method for the Vlasov-Poisson system, previously designed for periodic Fourier discretizations, by implementing Legendre polynomials and Hermite functions in the approximation of the distribution function with respect to the velocity variable. We discuss second-order accurate-in-time schemes, obtained by coupling spectral techniques in the space-velocity domain with a BDF time-stepping scheme. The resulting method possesses good conservation properties, which have been assessed by a series of numerical tests conducted on the standard two-stream instability benchmark problem. In the Hermite case, we also investigate the numerical behavior in dependence of a scaling parameter in the Gaussian weight. Confirming previous results from the literature, our experiments for different representative values of this parameter, indicate that a proper choice may significantly impact on accuracy, thus suggesting that suitable strategies should be developed to automatically update the parameter during the time-advancing procedure.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.