A Combinatorial Approach to the Number of Solutions of Systems of Homogeneous Polynomial Equations over Finite Fields (1807.01683v3)
Abstract: We give a complete conjectural formula for the number $e_r(d,m)$ of maximum possible ${\mathbb{F}}q$-rational points on a projective algebraic variety defined by $r$ linearly independent homogeneous polynomial equations of degree $d$ in $m+1$ variables with coefficients in the finite field ${\mathbb{F}}q$ with $q$ elements, when $d<q$. It is shown that this formula holds in the affirmative for several values of $r$. In the general case, we give explicit lower and upper bounds for $e_r(d,m)$ and show that they are sometimes attained. Our approach uses a relatively recent result, called the projective footprint bound, together with results from extremal combinatorics such as the Clements-Lindstr\"om Theorem and its variants. Applications to the problem of determining the generalized Hamming weights of projective Reed-Muller codes are also included.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.