Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representation Mapping: A Novel Approach to Generate High-Quality Multi-Lingual Emotion Lexicons (1807.00775v1)

Published 2 Jul 2018 in cs.CL

Abstract: In the past years, sentiment analysis has increasingly shifted attention to representational frameworks more expressive than semantic polarity (being positive, negative or neutral). However, these richer formats (like Basic Emotions or Valence-Arousal-Dominance, and variants therefrom), rooted in psychological research, tend to proliferate the number of representation schemes for emotion encoding. Thus, a large amount of representationally incompatible emotion lexicons has been developed by various research groups adopting one or the other emotion representation format. As a consequence, the reusability of these resources decreases as does the comparability of systems using them. In this paper, we propose to solve this dilemma by methods and tools which map different representation formats onto each other for the sake of mutual compatibility and interoperability of language resources. We present the first large-scale investigation of such representation mappings for four typologically diverse languages and find evidence that our approach produces (near-)gold quality emotion lexicons, even in cross-lingual settings. Finally, we use our models to create new lexicons for eight typologically diverse languages.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sven Buechel (13 papers)
  2. Udo Hahn (14 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.