Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparing large-scale graphs based on quantum probability theory (1807.00252v1)

Published 1 Jul 2018 in cs.DM

Abstract: In this paper, a new measurement to compare two large-scale graphs based on the theory of quantum probability is proposed. An explicit form for the spectral distribution of the corresponding adjacency matrix of a graph is established. Our proposed distance between two graphs is defined as the distance between the corresponding moment matrices of their spectral distributions. It is shown that the spectral distributions of their adjacency matrices in a vector state includes information not only about their eigenvalues, but also about the corresponding eigenvectors. Moreover, we prove that such distance is graph invariant and sub-structure invariant. Examples with various graphs are given, and distances between graphs with few vertices are checked. Computational results for real large-scale networks show that its accuracy is better than any existing methods and time cost is extensively cheap.

Citations (4)

Summary

We haven't generated a summary for this paper yet.