Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Space for Comparing Graphs (1404.4644v1)

Published 17 Apr 2014 in stat.ME, cs.IR, cs.LG, and stat.ML

Abstract: Finding a new mathematical representations for graph, which allows direct comparison between different graph structures, is an open-ended research direction. Having such a representation is the first prerequisite for a variety of machine learning algorithms like classification, clustering, etc., over graph datasets. In this paper, we propose a symmetric positive semidefinite matrix with the $(i,j)$-{th} entry equal to the covariance between normalized vectors $Aie$ and $Aje$ ($e$ being vector of all ones) as a representation for graph with adjacency matrix $A$. We show that the proposed matrix representation encodes the spectrum of the underlying adjacency matrix and it also contains information about the counts of small sub-structures present in the graph such as triangles and small paths. In addition, we show that this matrix is a \emph{"graph invariant"}. All these properties make the proposed matrix a suitable object for representing graphs. The representation, being a covariance matrix in a fixed dimensional metric space, gives a mathematical embedding for graphs. This naturally leads to a measure of similarity on graph objects. We define similarity between two given graphs as a Bhattacharya similarity measure between their corresponding covariance matrix representations. As shown in our experimental study on the task of social network classification, such a similarity measure outperforms other widely used state-of-the-art methodologies. Our proposed method is also computationally efficient. The computation of both the matrix representation and the similarity value can be performed in operations linear in the number of edges. This makes our method scalable in practice. We believe our theoretical and empirical results provide evidence for studying truncated power iterations, of the adjacency matrix, to characterize social networks.

Citations (31)

Summary

We haven't generated a summary for this paper yet.