Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate Graph Spectral Decomposition with the Variational Quantum Eigensolver (1912.12366v1)

Published 27 Dec 2019 in quant-ph and cs.DS

Abstract: Spectral graph theory is a branch of mathematics that studies the relationships between the eigenvectors and eigenvalues of Laplacian and adjacency matrices and their associated graphs. The Variational Quantum Eigensolver (VQE) algorithm was proposed as a hybrid quantum/classical algorithm that is used to quickly determine the ground state of a Hamiltonian, and more generally, the lowest eigenvalue of a matrix $M\in \mathbb{R}{n\times n}$. There are many interesting problems associated with the spectral decompositions of associated matrices, such as partitioning, embedding, and the determination of other properties. In this paper, we will expand upon the VQE algorithm to analyze the spectra of directed and undirected graphs. We evaluate runtime and accuracy comparisons (empirically and theoretically) between different choices of ansatz parameters, graph sizes, graph densities, and matrix types, and demonstrate the effectiveness of our approach on Rigetti's QCS platform on graphs of up to 64 vertices, finding eigenvalues of adjacency and Laplacian matrices. We finally make direct comparisons to classical performance with the Quantum Virtual Machine (QVM) in the appendix, observing a superpolynomial runtime improvement of our algorithm when run using a quantum computer.

Citations (3)

Summary

We haven't generated a summary for this paper yet.