Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sampling and Reconstruction of Signals on Product Graphs (1807.00145v1)

Published 30 Jun 2018 in eess.SP, cs.IT, and math.IT

Abstract: In this paper, we consider the problem of subsampling and reconstruction of signals that reside on the vertices of a product graph, such as sensor network time series, genomic signals, or product ratings in a social network. Specifically, we leverage the product structure of the underlying domain and sample nodes from the graph factors. The proposed scheme is particularly useful for processing signals on large-scale product graphs. The sampling sets are designed using a low-complexity greedy algorithm and can be proven to be near-optimal. To illustrate the developed theory, numerical experiments based on real datasets are provided for sampling 3D dynamic point clouds and for active learning in recommender systems.

Citations (25)

Summary

We haven't generated a summary for this paper yet.