Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Single Index Latent Variable Models for Network Topology Inference (1807.00002v1)

Published 28 Jun 2018 in stat.ML and cs.LG

Abstract: A semi-parametric, non-linear regression model in the presence of latent variables is applied towards learning network graph structure. These latent variables can correspond to unmodeled phenomena or unmeasured agents in a complex system of interacting entities. This formulation jointly estimates non-linearities in the underlying data generation, the direct interactions between measured entities, and the indirect effects of unmeasured processes on the observed data. The learning is posed as regularized empirical risk minimization. Details of the algorithm for learning the model are outlined. Experiments demonstrate the performance of the learned model on real data.

Summary

We haven't generated a summary for this paper yet.