Papers
Topics
Authors
Recent
Search
2000 character limit reached

Crowd Counting with Density Adaption Networks

Published 26 Jun 2018 in cs.CV | (1806.10040v1)

Abstract: Crowd counting is one of the core tasks in various surveillance applications. A practical system involves estimating accurate head counts in dynamic scenarios under different lightning, camera perspective and occlusion states. Previous approaches estimate head counts despite that they can vary dramatically in different density settings; the crowd is often unevenly distributed and the results are therefore unsatisfactory. In this paper, we propose a lightweight deep learning framework that can automatically estimate the crowd density level and adaptively choose between different counter networks that are explicitly trained for different density domains. Experiments on two recent crowd counting datasets, UCF_CC_50 and ShanghaiTech, show that the proposed mechanism achieves promising improvements over state-of-the-art methods. Moreover, runtime speed is 20 FPS on a single GPU.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.