Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Counterfactual Explanations with Natural Language (1806.09809v1)

Published 26 Jun 2018 in cs.CV

Abstract: Natural language explanations of deep neural network decisions provide an intuitive way for a AI agent to articulate a reasoning process. Current textual explanations learn to discuss class discriminative features in an image. However, it is also helpful to understand which attributes might change a classification decision if present in an image (e.g., "This is not a Scarlet Tanager because it does not have black wings.") We call such textual explanations counterfactual explanations, and propose an intuitive method to generate counterfactual explanations by inspecting which evidence in an input is missing, but might contribute to a different classification decision if present in the image. To demonstrate our method we consider a fine-grained image classification task in which we take as input an image and a counterfactual class and output text which explains why the image does not belong to a counterfactual class. We then analyze our generated counterfactual explanations both qualitatively and quantitatively using proposed automatic metrics.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lisa Anne Hendricks (37 papers)
  2. Ronghang Hu (26 papers)
  3. Trevor Darrell (324 papers)
  4. Zeynep Akata (144 papers)
Citations (96)

Summary

We haven't generated a summary for this paper yet.