Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Classification of momentum proper exact Hamiltonian group actions and the equivariant Eliashberg cotangent bundle conjecture (1806.09691v5)

Published 25 Jun 2018 in math.SG

Abstract: Let $G$ be a compact and connected Lie group. The Hamiltonian $G$-model functor maps the category of symplectic representations of closed subgroups of $G$ to the category of exact Hamiltonian $G$-actions. Based on previous joint work with Y. Karshon, the restriction of this functor to the momentum proper subcategory on either side induces a bijection between the sets of isomorphism classes. This classifies all momentum proper exact Hamiltonian $G$-actions (of arbitrary complexity). As an extreme case, we obtain a version of the Eliashberg cotangent bundle conjecture for transitive smooth actions. As another extreme case, the momentum proper Hamiltonian $G$-actions on contractible manifolds are exactly the symplectic $G$-representations, up to isomorphism.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.