Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Homology-Preserving Dimensionality Reduction via Manifold Landmarking and Tearing (1806.08460v1)

Published 22 Jun 2018 in cs.CG and cs.GR

Abstract: Dimensionality reduction is an integral part of data visualization. It is a process that obtains a structure preserving low-dimensional representation of the high-dimensional data. Two common criteria can be used to achieve a dimensionality reduction: distance preservation and topology preservation. Inspired by recent work in topological data analysis, we are on the quest for a dimensionality reduction technique that achieves the criterion of homology preservation, a generalized version of topology preservation. Specifically, we are interested in using topology-inspired manifold landmarking and manifold tearing to aid such a process and evaluate their effectiveness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Lin Yan (168 papers)
  2. Yaodong Zhao (3 papers)
  3. Paul Rosen (41 papers)
  4. Carlos Scheidegger (28 papers)
  5. Bei Wang (102 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.