Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Survey: Geometric Foundations of Data Reduction (2008.06853v2)

Published 16 Aug 2020 in cs.LG, cs.NA, math.NA, and stat.ML

Abstract: This survey is written in summer, 2016. The purpose of this survey is to briefly introduce nonlinear dimensionality reduction (NLDR) in data reduction. The first two NLDR were respectively published in Science in 2000 in which they solve the similar reduction problem of high-dimensional data endowed with the intrinsic nonlinear structure. The intrinsic nonlinear structure is always interpreted as a concept in manifolds from geometry and topology in theoretical mathematics by computer scientists and theoretical physicists. In 2001, the concept of Manifold Learning first appears as an NLDR method called Laplacian Eigenmaps. In a typical manifold learning setup, the data set, also called the observation set, is distributed on or near a low dimensional manifold M embedded in RD, which yields that each observation has a D-dimensional representation. The goal of manifold learning is to reduce these observations as a compact lower-dimensional representation based on the geometric information. The reduction procedure is called the spectral manifold learning. In this paper, we derive each spectral manifold learning with the matrix and operator representation, and we then discuss the convergence behavior of each method in a geometric uniform language. Hence, the survey is named Geometric Foundations of Data Reduction.

Summary

We haven't generated a summary for this paper yet.