Papers
Topics
Authors
Recent
Search
2000 character limit reached

Dictionary-Guided Editing Networks for Paraphrase Generation

Published 21 Jun 2018 in cs.CL | (1806.08077v1)

Abstract: An intuitive way for a human to write paraphrase sentences is to replace words or phrases in the original sentence with their corresponding synonyms and make necessary changes to ensure the new sentences are fluent and grammatically correct. We propose a novel approach to modeling the process with dictionary-guided editing networks which effectively conduct rewriting on the source sentence to generate paraphrase sentences. It jointly learns the selection of the appropriate word level and phrase level paraphrase pairs in the context of the original sentence from an off-the-shelf dictionary as well as the generation of fluent natural language sentences. Specifically, the system retrieves a set of word level and phrase level araphrased pairs derived from the Paraphrase Database (PPDB) for the original sentence, which is used to guide the decision of which the words might be deleted or inserted with the soft attention mechanism under the sequence-to-sequence framework. We conduct experiments on two benchmark datasets for paraphrase generation, namely the MSCOCO and Quora dataset. The evaluation results demonstrate that our dictionary-guided editing networks outperforms the baseline methods.

Citations (27)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.