Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Similarity Metric Learning for Real-Time Pedestrian Tracking

Published 20 Jun 2018 in cs.CV | (1806.07592v2)

Abstract: Tracking by detection is a common approach to solving the Multiple Object Tracking problem. In this paper we show how learning a deep similarity metric can improve three key aspects of pedestrian tracking on a multiple object tracking benchmark. We train a convolutional neural network to learn an embedding function in a Siamese configuration on a large person re-identification dataset. The offline-trained embedding network is integrated in to the tracking formulation to improve performance while retaining real-time performance. The proposed tracker stores appearance metrics while detections are strong, using this appearance information to: prevent ID switches, associate tracklets through occlusion, and propose new detections where detector confidence is low. This method achieves competitive results in evaluation, especially among online, real-time approaches. We present an ablative study showing the impact of each of the three uses of our deep appearance metric.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.