Papers
Topics
Authors
Recent
2000 character limit reached

Semi-supervised Hashing for Semi-Paired Cross-View Retrieval

Published 19 Jun 2018 in cs.CV | (1806.07155v1)

Abstract: Recently, hashing techniques have gained importance in large-scale retrieval tasks because of their retrieval speed. Most of the existing cross-view frameworks assume that data are well paired. However, the fully-paired multiview situation is not universal in real applications. The aim of the method proposed in this paper is to learn the hashing function for semi-paired cross-view retrieval tasks. To utilize the label information of partial data, we propose a semi-supervised hashing learning framework which jointly performs feature extraction and classifier learning. The experimental results on two datasets show that our method outperforms several state-of-the-art methods in terms of retrieval accuracy.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.