Papers
Topics
Authors
Recent
Search
2000 character limit reached

Degenerate soliton solutions and their dynamics in the nonlocal Manakov system: II Interactions between solitons

Published 18 Jun 2018 in nlin.SI | (1806.06735v1)

Abstract: In this paper, by considering the degenerate two bright soliton solutions of the nonlocal Manakov system, we bring out three different types of energy sharing collisions for two different parametric conditions. Among the three, two of them are new which do not exist in the local Manakov equation. By performing an asymptotic analysis to the degenerate two-soliton solution, we explain the changes which occur in the quasi-intensity/quasi-power, phase shift and relative separation distance during the collision process. Remarkably, the intensity redistribution reveals that in the new types of shape changing collisions, the energy difference of soliton in the two modes is not preserved during collision. In contrast to this, in the other shape changing collision, the total energy of soliton in the two modes is conserved during collision. In addition to this, by tuning the imaginary parts of the wave numbers, we observe localized resonant patterns in both the scenarios. We also demonstrate the existence of bound states in the CNNLS equation during the collision process for certain parametric values.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.