Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Logistic Ensemble Models (1806.04555v1)

Published 12 Jun 2018 in stat.ML and cs.LG

Abstract: Predictive models that are developed in a regulated industry or a regulated application, like determination of credit worthiness, must be interpretable and rational (e.g., meaningful improvements in basic credit behavior must result in improved credit worthiness scores). Machine Learning technologies provide very good performance with minimal analyst intervention, making them well suited to a high volume analytic environment, but the majority are black box tools that provide very limited insight or interpretability into key drivers of model performance or predicted model output values. This paper presents a methodology that blends one of the most popular predictive statistical modeling methods for binary classification with a core model enhancement strategy found in machine learning. The resulting prediction methodology provides solid performance, from minimal analyst effort, while providing the interpretability and rationality required in regulated industries, as well as in other environments where interpretation of model parameters is required (e.g. businesses that require interpretation of models, to take action on them).

Citations (3)

Summary

We haven't generated a summary for this paper yet.