Papers
Topics
Authors
Recent
2000 character limit reached

Determining the dimension of factor structures in non-stationary large datasets (1806.03647v1)

Published 10 Jun 2018 in stat.ME and econ.EM

Abstract: We propose a procedure to determine the dimension of the common factor space in a large, possibly non-stationary, dataset. Our procedure is designed to determine whether there are (and how many) common factors (i) with linear trends, (ii) with stochastic trends, (iii) with no trends, i.e. stationary. Our analysis is based on the fact that the largest eigenvalues of a suitably scaled covariance matrix of the data (corresponding to the common factor part) diverge, as the dimension $N$ of the dataset diverges, whilst the others stay bounded. Therefore, we propose a class of randomised test statistics for the null that the $p$-th eigenvalue diverges, based directly on the estimated eigenvalue. The tests only requires minimal assumptions on the data, and no restrictions on the relative rates of divergence of $N$ and $T$ are imposed. Monte Carlo evidence shows that our procedure has very good finite sample properties, clearly dominating competing approaches when no common factors are present. We illustrate our methodology through an application to US bond yields with different maturities observed over the last 30 years. A common linear trend and two common stochastic trends are found and identified as the classical level, slope and curvature factors.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.