Papers
Topics
Authors
Recent
Search
2000 character limit reached

Khovanov homology and categorification of skein modules

Published 9 Jun 2018 in math.QA, math.GT, and math.RT | (1806.03416v1)

Abstract: For every oriented surface of finite type, we construct a functorial Khovanov homology for links in a thickening of the surface, which takes values in a categorification of the corresponding gl(2) skein module. The latter is a mild refinement of the Kauffman bracket skein algebra, and its categorification is constructed using a category of gl(2) foams that admits an interesting non-negative grading. We expect that the natural algebra structure on the gl(2) skein module can be categorified by a tensor product that makes the surface link homology functor monoidal. We construct a candidate bifunctor on the target category and conjecture that it extends to a monoidal structure. This would give rise to a canonical basis of the associated gl(2) skein algebra and verify an analogue of a positivity conjecture of Fock--Goncharov and Thurston. We provide evidence towards the monoidality conjecture by checking several instances of a categorified Frohman-Gelca formula for the skein algebra of the torus. Finally, we recover a variant of the Asaeda--Przytycki--Sikora surface link homologies and prove that surface embeddings give rise to spectral sequences between them.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.