Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Homology of étale groupoids, a graded approach (1806.03398v2)

Published 9 Jun 2018 in math.KT, math.OA, and math.RA

Abstract: We introduce a graded homology theory for graded \'etale groupoids. For $\mathbb Z$-graded groupoids, we establish an exact sequence relating the graded zeroth-homology to non-graded one. Specialising to the arbitrary graph groupoids, we prove that the graded zeroth homology group with constant coefficients $\mathbb Z$ is isomorphic to the graded Grothendieck group of the associated Leavitt path algebra. To do this, we consider the diagonal algebra of the Leavitt path algebra of the covering graph of the original graph and construct the group isomorphism directly. Considering the trivial grading, our result extends Matui's on zeroth homology of finite graphs with no sinks (shifts of finite type) to all arbitrary graphs. We use our results to show that graded zeroth-homology group is a complete invariant for eventual conjugacy of shift of finite types and could be the unifying invariant for the analytic and the algebraic graph algebras.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.