Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Efficient Full-Matrix Adaptive Regularization (1806.02958v2)

Published 8 Jun 2018 in cs.LG, math.OC, and stat.ML

Abstract: Adaptive regularization methods pre-multiply a descent direction by a preconditioning matrix. Due to the large number of parameters of machine learning problems, full-matrix preconditioning methods are prohibitively expensive. We show how to modify full-matrix adaptive regularization in order to make it practical and effective. We also provide a novel theoretical analysis for adaptive regularization in non-convex optimization settings. The core of our algorithm, termed GGT, consists of the efficient computation of the inverse square root of a low-rank matrix. Our preliminary experiments show improved iteration-wise convergence rates across synthetic tasks and standard deep learning benchmarks, and that the more carefully-preconditioned steps sometimes lead to a better solution.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.