Ideals in Rings and Intermediate Rings of Measurable Functions (1806.02860v1)
Abstract: The set of all maximal ideals of the ring $\mathcal{M}(X,\mathcal{A})$ of real valued measurable functions on a measurable space $(X,\mathcal{A})$ equipped with the hull-kernel topology is shown to be homeomorphic to the set $\hat{X}$ of all ultrafilters of measurable sets on $X$ with the Stone-topology. This yields a complete description of the maximal ideals of $\mathcal{M}(X,\mathcal{A})$ in terms of the points of $\hat{X}$. It is further shown that the structure spaces of all the intermediate subrings of $\mathcal{M}(X,\mathcal{A})$ containing the bounded measurable functions are one and the same and are compact Hausdorff zero-dimensional spaces. It is observed that when $X$ is a $P$-space, then $C(X) = \mathcal{M}(X,\mathcal{A})$ where $\mathcal{A}$ is the $\sigma$-algebra consisting of the zero-sets of $X$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.