Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Spatial Frequency Loss for Learning Convolutional Autoencoders (1806.02336v1)

Published 6 Jun 2018 in cs.CV, cs.AI, cs.LG, and stat.ML

Abstract: This paper presents a learning method for convolutional autoencoders (CAEs) for extracting features from images. CAEs can be obtained by utilizing convolutional neural networks to learn an approximation to the identity function in an unsupervised manner. The loss function based on the pixel loss (PL) that is the mean squared error between the pixel values of original and reconstructed images is the common choice for learning. However, using the loss function leads to blurred reconstructed images. A method for learning CAEs using a loss function computed from features reflecting spatial frequencies is proposed to mitigate the problem. The blurs in reconstructed images show lack of high spatial frequency components mainly constituting edges and detailed textures that are important features for tasks such as object detection and spatial matching. In order to evaluate the lack of components, a convolutional layer with a Laplacian filter bank as weights is added to CAEs and the mean squared error of features in a subband, called the spatial frequency loss (SFL), is computed from the outputs of each filter. The learning is performed using a loss function based on the SFL. Empirical evaluation demonstrates that using the SFL reduces the blurs in reconstructed images.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.