Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Structured Multi-task Multi-view Sparse Tracking (1806.01985v1)

Published 6 Jun 2018 in cs.CV

Abstract: Sparse representation is a viable solution to visual tracking. In this paper, we propose a structured multi-task multi-view tracking (SMTMVT) method, which exploits the sparse appearance model in the particle filter framework to track targets under different challenges. Specifically, we extract features of the target candidates from different views and sparsely represent them by a linear combination of templates of different views. Unlike the conventional sparse trackers, SMTMVT not only jointly considers the relationship between different tasks and different views but also retains the structures among different views in a robust multi-task multi-view formulation. We introduce a numerical algorithm based on the proximal gradient method to quickly and effectively find the sparsity by dividing the optimization problem into two subproblems with the closed-form solutions. Both qualitative and quantitative evaluations on the benchmark of challenging image sequences demonstrate the superior performance of the proposed tracker against various state-of-the-art trackers.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mohammadreza Javanmardi (3 papers)
  2. Xiaojun Qi (6 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.