Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic Gradient Descent with Hyperbolic-Tangent Decay on Classification

Published 5 Jun 2018 in cs.CV | (1806.01593v2)

Abstract: Learning rate scheduler has been a critical issue in the deep neural network training. Several schedulers and methods have been proposed, including step decay scheduler, adaptive method, cosine scheduler and cyclical scheduler. This paper proposes a new scheduling method, named hyperbolic-tangent decay (HTD). We run experiments on several benchmarks such as: ResNet, Wide ResNet and DenseNet for CIFAR-10 and CIFAR-100 datasets, LSTM for PAMAP2 dataset, ResNet on ImageNet and Fashion-MNIST datasets. In our experiments, HTD outperforms step decay and cosine scheduler in nearly all cases, while requiring less hyperparameters than step decay, and more flexible than cosine scheduler. Code is available at https://github.com/BIGBALLON/HTD.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.