Papers
Topics
Authors
Recent
2000 character limit reached

A Solvable Deformation of Quantum Mechanics (1806.01407v4)

Published 4 Jun 2018 in hep-th, math-ph, math.MP, math.SP, and quant-ph

Abstract: The conventional Hamiltonian $H= p2+ V_N(x)$, where the potential $V_N(x)$ is a polynomial of degree $N$, has been studied intensively since the birth of quantum mechanics. In some cases, its spectrum can be determined by combining the WKB method with resummation techniques. In this paper we point out that the deformed Hamiltonian $H=2 \cosh(p)+ V_N(x)$ is exactly solvable for any potential: a conjectural exact quantization condition, involving well-defined functions, can be written down in closed form, and determines the spectrum of bound states and resonances. In particular, no resummation techniques are needed. This Hamiltonian is obtained by quantizing the Seiberg-Witten curve of $\mathcal{N}=2$ Yang-Mills theory, and the exact quantization condition follows from the correspondence between spectral theory and topological strings, after taking a suitable four-dimensional limit. In this formulation, conventional quantum mechanics emerges in a scaling limit near the Argyres-Douglas superconformal point in moduli space. Although our deformed version of quantum mechanics is in many respects similar to the conventional version, it also displays new phenomena, like spontaneous parity symmetry breaking.

Citations (40)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.