Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The Heat Flow on Metric Random Walk Spaces (1806.01215v5)

Published 4 Jun 2018 in math.AP

Abstract: In this paper we study the Heat Flow on Metric Random Walk Spaces, which unifies into a broad framework the heat flow on locally finite weighted connected graphs, the heat flow determined by finite Markov chains and some nonlocal evolution problems. We give different characterizations of the ergodicity and prove that a metric random walk space with positive Ollivier-Ricci curvature is ergodic. Furthermore, we prove a Cheeger inequality and, as a consequence, we show that a Poincar\'{e} inequality holds if, and only if, an isoperimetric inequality holds. We also study the Bakry-\'{E}mery curvature-dimension condition and its relation with functional inequalities like the Poincar\'{e} inequality and the transport-information inequalities.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.