Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Frieze Vectors and Unitary Friezes (1806.00940v3)

Published 4 Jun 2018 in math.CO, math.RA, and math.RT

Abstract: Let Q be a quiver without loops and 2-cycles, let A(Q) be the corresponding cluster algebra and let x be a cluster. We introduce a new class of integer vectors which we call frieze vectors relative to x. These frieze vectors are defined as solutions of certain Diophantine equations given by the cluster variables in the cluster algebra. We show that every cluster gives rise to a frieze vector and that the frieze vector determines the cluster. We also study friezes of type Q as homomorphisms from the cluster algebra to an arbitrary integral domain. In particular, we show that every positive integral frieze of affine Dynkin type A is unitary, which means it is obtained by specializing each cluster variable in one cluster to the constant 1. This completes the answer to the question of unitarity for all positive integral friezes of Dynkin and affine Dynkin types.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.