Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DeepMiner: Discovering Interpretable Representations for Mammogram Classification and Explanation (1805.12323v2)

Published 31 May 2018 in cs.CV

Abstract: We propose DeepMiner, a framework to discover interpretable representations in deep neural networks and to build explanations for medical predictions. By probing convolutional neural networks (CNNs) trained to classify cancer in mammograms, we show that many individual units in the final convolutional layer of a CNN respond strongly to diseased tissue concepts specified by the BI-RADS lexicon. After expert annotation of the interpretable units, our proposed method is able to generate explanations for CNN mammogram classification that are consistent with ground truth radiology reports on the Digital Database for Screening Mammography. We show that DeepMiner not only enables better understanding of the nuances of CNN classification decisions but also possibly discovers new visual knowledge relevant to medical diagnosis.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.