Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Inexact Stochastic Mirror Descent for two-stage nonlinear stochastic programs (1805.11732v3)

Published 29 May 2018 in math.OC

Abstract: We introduce an inexact variant of Stochastic Mirror Descent (SMD), called Inexact Stochastic Mirror Descent (ISMD), to solve nonlinear two-stage stochastic programs where the second stage problem has linear and nonlinear coupling constraints and a nonlinear objective function which depends on both first and second stage decisions. Given a candidate first stage solution and a realization of the second stage random vector, each iteration of ISMD combines a stochastic subgradient descent using a prox-mapping with the computation of approximate (instead of exact for SMD) primal and dual second stage solutions. We propose two variants of ISMD and show the convergence of these variants to the optimal value of the stochastic program. We show in particular that under some assumptions, ISMD has the same convergence rate as SMD. The first variant of ISMD and its convergence analysis are based on the formulas for inexact cuts of value functions of convex optimization problems shown recently in [4]. The second variant of ISMD and the corresponding convergence analysis rely on new formulas that we derive for inexact cuts of value functions of convex optimization problems assuming that the dual function of the second stage problem for all fixed first stage solution and realization of the second stage random vector, is strongly concave. We show that this assumption of strong concavity is satisfied for some classes of problems and present the results of numerical experiments on two simple two-stage problems which show that solving approximately the second stage problem for the first iterations of ISMD can help us obtain a good approximate first stage solution quicker than with SMD. [4] V. Guigues, Inexact decomposition methods for solving deterministic and stochastic convex dynamic programming equations, arXiv, available at arXiv:1707.00812, 2017.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube