The Chern-Schwartz-MacPherson class of an embeddable scheme (1805.11116v2)
Abstract: There is an explicit formula expressing the Chern-Schwartz-MacPherson class of a hypersurface in a nonsingular variety (in characteristic $0$) in terms of the Segre class of its jacobian subscheme; this has been known for a number of years. We generalize this formula to arbitrary embeddable schemes: for every subscheme $X$ of a nonsingular variety $V$, we define an associated subscheme $Y$ of a projective bundle over $V$ and provide an explicit formula for the Chern-Schwartz-MacPherson class of $X$ in terms of the Segre class of $Y$. If $X$ is a local complete intersection, a version of the result yields a direct expression for the Milnor class of $X$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.