Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Ranks, $2$-Selmer groups, and Tamagawa numbers of elliptic curves with $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$-torsion (1805.10709v2)

Published 27 May 2018 in math.NT

Abstract: In 2016, Balakrishnan-Ho-Kaplan-Spicer-Stein-Weigandt produced a database of elliptic curves over $\mathbb{Q}$ ordered by height in which they computed the rank, the size of the $2$-Selmer group, and other arithmetic invariants. They observed that after a certain point, the average rank seemed to decrease as the height increased. Here we consider the family of elliptic curves over $\mathbb{Q}$ whose rational torsion subgroup is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z}$. Conditional on GRH and BSD, we compute the rank of $92\%$ of the $202461$ curves with parameter height less than $103$. We also compute the size of the $2$-Selmer group and the Tamagawa product, and prove that their averages tend to infinity for this family.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.