Guessing with a Bit of Help (1805.09051v1)
Abstract: What is the value of a single bit to a guesser? We study this problem in a setup where Alice wishes to guess an i.i.d. random vector, and can procure one bit of information from Bob, who observes this vector through a memoryless channel. We are interested in the guessing efficiency, which we define as the best possible multiplicative reduction in Alice's guessing-moments obtainable by observing Bob's bit. For the case of a uniform binary vector observed through a binary symmetric channel, we provide two lower bounds on the guessing efficiency by analyzing the performance of the Dictator and Majority functions, and two upper bounds via maximum entropy and Fourier-analytic / hypercontractivity arguments. We then extend our maximum entropy argument to give a lower bound on the guessing efficiency for a general channel with a binary uniform input, via the strong data-processing inequality constant of the reverse channel. We compute this bound for the binary erasure channel, and conjecture that Greedy Dictator functions achieve the guessing efficiency.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.