Papers
Topics
Authors
Recent
Search
2000 character limit reached

Analyzing Families of Experiments in SE: A Systematic Mapping Study

Published 23 May 2018 in cs.SE | (1805.09009v3)

Abstract: Context: Families of experiments (i.e., groups of experiments with the same goal) are on the rise in Software Engineering (SE). Selecting unsuitable aggregation techniques to analyze families may undermine their potential to provide in-depth insights from experiments' results. Objectives: Identifying the techniques used to aggregate experiments' results within families in SE. Raising awareness of the importance of applying suitable aggregation techniques to reach reliable conclusions within families. Method: We conduct a systematic mapping study (SMS) to identify the aggregation techniques used to analyze families of experiments in SE. We outline the advantages and disadvantages of each aggregation technique according to mature experimental disciplines such as medicine and pharmacology. We provide preliminary recommendations to analyze and report families of experiments in view of families' common limitations with regard to joint data analysis. Results: Several aggregation techniques have been used to analyze SE families of experiments, including Narrative synthesis, Aggregated Data (AD), Individual Participant Data (IPD) mega-trial or stratified, and Aggregation of p-values. The rationale used to select aggregation techniques is rarely discussed within families. Families of experiments are commonly analyzed with unsuitable aggregation techniques according to the literature of mature experimental disciplines. Conclusion: Data analysis' reporting practices should be improved to increase the reliability and transparency of joint results. AD and IPD stratified appear to be suitable to analyze SE families of experiments.

Citations (30)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.