Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Part-based Tracking by Sampling (1805.08511v2)

Published 22 May 2018 in cs.CV

Abstract: We propose a novel part-based method for tracking an arbitrary object in challenging video sequences. The colour distribution of tracked image patches on the target object are represented by pairs of RGB samples and counts of how many pixels in the patch are similar to them. Patches are placed by segmenting the object in the given bounding box and placing patches in homogeneous regions of the object. These are located in subsequent image frames by applying non-shearing affine transformations to the patches' previous locations, locally optimising the best of these, and evaluating their quality using a modified Bhattacharyya distance. In experiments carried out on VOT2018 and OTB100 benchmarks, the tracker achieves higher performance than all other part-based trackers. An ablation study is used to reveal the effectiveness of each tracking component, with largest performance gains found when using the patch placement scheme.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. George De Ath (10 papers)
  2. Richard M. Everson (6 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.