Counting partitions inside a rectangle (1805.08375v3)
Abstract: We consider the number of partitions of $n$ whose Young diagrams fit inside an $m \times \ell$ rectangle; equivalently, we study the coefficients of the $q$-binomial coefficient $\binom{m+\ell}{m}_q$. We obtain sharp asymptotics throughout the regime $\ell = \Theta (m)$ and $n = \Theta (m2)$. Previously, sharp asymptotics were derived by Tak\'acs only in the regime where $|n - \ell m /2| = O(\sqrt{\ell m (\ell + m)})$ using a local central limit theorem. Our approach is to solve a related large deviation problem: we describe the tilted measure that produces configurations whose bounding rectangle has the given aspect ratio and is filled to the given proportion. Our results are sufficiently sharp to yield the first asymptotic estimates on the consecutive differences of these numbers when $n$ is increased by one and $m, \ell$ remain the same, hence significantly refining Sylvester's unimodality theorem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.