Papers
Topics
Authors
Recent
2000 character limit reached

On a general structure for hazard-based regression models: an application to population-based cancer research (1805.08110v2)

Published 21 May 2018 in stat.ME and stat.AP

Abstract: The proportional hazards model represents the most commonly assumed hazard structure when analysing time to event data using regression models. We study a general hazard structure which contains, as particular cases, proportional hazards, accelerated hazards, and accelerated failure time structures, as well as combinations of these. We propose an approach to apply these different hazard structures, based on a flexible parametric distribution (Exponentiated Weibull) for the baseline hazard. This distribution allows us to cover the basic hazard shapes of interest in practice: constant, bathtub, increasing, decreasing, and unimodal. In an extensive simulation study, we evaluate our approach in the context of excess hazard modelling, which is the main quantity of interest in descriptive cancer epidemiology. This study exhibits good inferential properties of the proposed model, as well as good performance when using the Akaike Information Criterion for selecting the hazard structure. An application on lung cancer data illustrates the usefulness of the proposed model.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.